
Hyper-Dimensional Deformation Simulation
ALVIN SHI, HAOMIAO WU, and THEODORE KIM, Yale University, USA

Fig. 1. Two 4D armadillo prisms brush past each other. In the top left, a 3D slice where the armadillos are most visible. Bottom left, a different 3D slice reveals
the extrusion direction. In the middle are two stills from a four-dimensional rotation about their collision at frame 800. On the right, they have failed to hug
and instead have passed through each other.

We present a method for simulating deformable bodies in four spatial di-
mensions. To accomplish this, we generalize several pieces of the traditional
simulation pipeline. Starting from the meshing stage, we propose a simple
method for generating a pentachoral mesh, the 4D analog of a tetrahedral
mesh. Next, we show how to generalize the deformation invariants, allow-
ing us to construct 4D hyperelastic energies that lead directly to hyper-
dimensional deformation forces. Finally, we formulate collision detection
and response in 4D. Our eigenanalyses of the resulting deformation and
collision energies generalize to arbitrarily higher dimensions. The resulting
simulations display a variety of previously unseen visual phenomena.

CCS Concepts: • Computing methodologies→ Collision detection; Physi-
cal simulation;Mesh geometry models;Model development and analysis.

Additional Key Words and Phrases: Physical Simulation, N-Dimensional
Physics, Collision Detection

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1540-2/2025/08.
https://doi.org/10.1145/3721238.3730730

ACM Reference Format:
Alvin Shi, Haomiao Wu, and Theodore Kim. 2025. Hyper-Dimensional De-
formation Simulation. In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Conference Papers (SIGGRAPH Conference
Papers ’25), August 10–14, 2025, Vancouver, BC, Canada. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3721238.3730730

1 INTRODUCTION
Hyper-dimensional geometries, 4D shapes that occupy four spatial
dimensions beyond the traditional 2D and 3D, have attracted interest
in art [Henderson 2018], visualization [Hanson and Cross 1993],
perception [Miwa et al. 2015], film [Seymour 2014] and VR [Jamroz
2009]. Cavallo [2021] surveyed previous computer graphics work,
which includes the rendering of higher-dimensional objects [Kim
et al. 2022] and their rigid body simulation [ten Bosch 2020].
We present the first hyper-dimensional simulation of 4D defor-

mation. This requires generalizing many pieces of the simulation
pipeline, including meshing, force computation, and collision pro-
cessing. We propose novel approaches to all of these, and demon-
strate their effectiveness in a variety of scenes.
For meshing, the 4D analog of a 3D tetrahedral mesh is a penta-

choral mesh. While methods for generating 3D meshes are mature,

1

https://doi.org/10.1145/3721238.3730730
https://doi.org/10.1145/3721238.3730730

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Shi, Wu, and Kim

4D meshing techniques are far less developed. We present a sim-
ple extrusion and filling method that uses existing 3D meshing
techniques to generate viable 4D meshes.

For internal material forces, we show how to generalize the tradi-
tional 2D and 3D deformation invariants [Bonet et al. 2021]. Once
these are in place, existing hyperelastic energies can be applied in
4D. The eigenanalysis of these invariants [Lin et al. 2024; Smith et al.
2019] can then be extended to 4D, which additionally reveals the
eigenstructure of the arbitrary 𝑛-D case.
For collision processing, we show that the equivalent of point-

triangle and edge-edge collisions in 3D are point-tetrahedron and
edge-triangle in 4D. We formulate collision penalty energies for
both of these cases, and similar to the 3D case [Huang et al. 2024;
Shi and Kim 2023], are able to obtain analytic eigensystems for
each. Our analysis again generalizes to 𝑛-D, effectively obtaining
the eigensystems for all higher-dimensional penalty energies.

Our contributions are:

• The first hyper-dimensional deformable body simulator.
• An extrusion and filling method for 4D mesh generation.
• 4D formulation of elastic deformation and collision energies.
• 𝑛-D analysis and eigensystems for elastic deformation and
collision energies.

2 RELATED WORK
Deformation in computer graphics has traditionally been examined
in 2D [Alexa et al. 2000] and 3D [Baraff and Witkin 1998]. One pop-
ular method [Debunne et al. 2001; Müller et al. 2002] is to simulate
a 3D volume using a tetrahedral mesh [Alliez et al. 2005; Hu et al.
2018; Si 2015], resolve its internal material forces using hyperelastic
strain energies [Bonet et al. 2021], and to resolve collisions using
a variety of energy-based and geometric methods [Andrews et al.
2022; Gottschalk et al. 1996; Moore and Wilhelms 1988].
This class of physics-based simulations has not previously been

extended to 4D, although other topics in computer graphics have
been investigated in higher dimensions. One of the most familiar
is the representation of 3D rotations using (unit) 4D quaternions
[Hanson 2005]. Quaternions have also been used to generate hyper-
dimensional fractals [Hart et al. 1989; Norton 1982], but did not
simulate elastic deformation. Other 4D approaches assign novel
sensory modalities to the fourth dimension [Nam et al. 2024], but
we explicitly assign it to a spatial dimension.

Existing work has instead largely focused on rendering and visu-
alization. For example, van Wijk and van Liere [1993] proposed the
Hyperslice method for extracting 2D slices from higher-dimensional
data, while Hibbard et al. [1996] introduced the Vis5D system for
visualizing time-varying 4D scalar data. More recently, Kim et al.
[2022] proposed amethod formodeling and rendering non-Euclidean
geometries, in particular 3D polytopes embedded in 4D Euclidean
spaces, and Cavallo [2021] examined the authoring the rendering
issues associated with 4D spatial content.

3Dmeshing can use higher dimensions to remove self-intersections
[Zhong et al. 2018] and ensure anisotropy [Lévy and Bonneel 2013],
but the problem of full 4D meshing has only been investigated by
a handful of researchers [Brandts et al. 2007; Petrov and Todorov

2021], and sometimes attaches the additional dimension to time
[Caplan et al. 2020] instead of space.
Other fields have investigated high-dimensional elasticity for

several applications. Borrel and Bechmann [1991] use the fourth
dimension as a space-time regularizer, and Zhao [2017] use four-
dimensional elastic lattices to surpass limitations in three-dimensional
models. von Danwitz et al. [2021] additionally represent topology
changes for obstacles in fluid dynamics with four-dimensional elas-
tic meshes, andWang et al. [2016] formalizes relativistic deformation
using spacetime coordinates.
The closest work to ours is ten Bosch [2020], which formulated

rigid body dynamics in higher dimensions. They also reformulated
the collision pipeline to account for the extra dimension, but the
rigidity condition allowed them to address overlapping polytopes.
More granular point-tetrahedron and edge-triangle cases are re-
quired under deformation. Their rigidity assumption also only re-
quired a 4D inertia tensor to enable dynamics simulation, but defor-
mation requires a full 4D elasticity formulation.

3 MESH GENERATION
In 2D, the simplicial element is the triangle, while in 3D the equiva-
lent simplex is the tetrahedron. In 4D, the equivalent primitive is
the 5-point pentachoron. Unlike triangle and tetrahedral meshes,
pentachoral meshes are not readily available online, and there is no
standard meshing algorithm for their generation.
We will instead use well-conditioned tetrahedral meshes gener-

ated using mature algorithms [Si 2015] as a starting point to create
simulation-ready pentachoralized prismatic meshes. We present the
process as a sequence of extrusions and fillings. For our use case,
these techniques provide a sufficient amount of control over mesh
resolution and expressiveness. Higher-dimensional constrained De-
launay triangulations are also possible, but adding Steiner points
for these cases is still challenging [Shewchuk 2008].

3.1 3D Extrude and Fill
For illustrative purposes, we will first show the extrusion and filling
process in 3D, where we extrude a triangle mesh to generate a
tetrahedral mesh. With this established, we can then extend the
process analogously to 4D, where we extrude a tetrahedral mesh
into a pentachoral mesh.

Consider a set of mesh verticesV = {v0, . . . , v𝑛}, where v𝑖 ∈ R3.
Let a triangle t = {𝑖, 𝑗, 𝑘} be a triplet of integers that specify v𝑖 ,
v𝑗 , and v𝑘 as a triangle in the mesh. As input, we take a set of
vertices V and triangles T = {t0, . . . , t𝑚}, along with an extrusion
vector ve ∈ R3. We can then generate a tetrahedral mesh along
the extrusion direction by forming a new set of vertices Ve and
tetrahedra He ⊂ N4.

3.1.1 Single triangle preliminaries. The case of a single triangle
is straightforward. Given V = {v0, v1, v2}, T = {{0, 1, 2}}, and
extrusion direction ve, a set of extruded vertices can be written:

Ve = {v0, v1, v2, v0 + ve, v1 + ve, v2 + ve} (1)

The new set Ve now forms a prism that must then be decomposed
into tetrahedra. Successive corner cutting leads to one possible

2

Hyper-Dimensional Deformation Simulation SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

Fig. 2. Correspondence from directed graphs to surface triangulation. For each
edge on the input shape, we cut a diagonal on the corresponding extruded
face according to the direction assigned to the edge.

decomposition:

H𝑒 = {{0, 1, 2, 5}, {0, 3, 4, 5}, {0, 1, 4, 5}} (2)

Rotations and reflections of vertex labels then yield six distinct
possible decompositions. For the single triangle case, selecting any
one of the decompositions suffices to generate a tetrahedralized
triangular prism.

3.1.2 Multiple triangles. For adjacent triangles that share edges,
obtainingVe remains straightforward: add ve to each v𝑖 ∈ V and
append to Ve. However, tetrahedral decomposition becomes more
involved. The shared edges between triangles extrude into rectan-
gles that must be triangulated in a way that ensures compatibility
between each prism pair.

To guarantee compatibility, we observe that each tetrahedraliza-
tion of the triangular prism induces a unique set of boundary cuts
on the prism’s surface, where the diagonal cut on each rectangle
can then be encoded as a direction on the edge of the original trian-
gle (Fig. 2). By assigning each edge a direction, we guarantee that
boundaries between tetrahedralized prisms are compatible after
extrusion. Adjacent prisms query their shared edge’s direction to de-
termine the orientation of the diagonal cut, so there is no possibility
of having mismatching cuts from incompatible decompositions.
However, it can be impossible to cleanly tetrahedralize prisms

with certain sets of boundary cuts without Steiner points. Fortu-
nately, the only two cases where an extruded triangle tetrahedral-
ization requires Steiner points is exactly the case of a cycle. As
long as edge directions form a directed acyclic graph (DAG), the
diagonals encoded by the directions form a consistent, compatible
tetrahedralization of the adjoining prisms.
Using vertex indices as a total order to obtain a DAG, we then

assign every extruded prism a tetrahedralization according to the
edge directions, which yields a tetrahedral mesh with consistent
internal faces (Fig. 3). We do not claim this as a general method
for generating tetrahedral meshes, but rather one way of reliably
generating a viable mesh. Crucially, the method generalizes to 4D.

3.2 4D Extrude and Fill
Extrusion in 4D follows from the 3D case.We start with a tetrahedral
mesh composed of vertices V , where v𝑖 ∈ R4 with the fourth coor-
dinate set to zero, tetrahedraH ⊂ N4, and an extrusion direction
ve ∈ R4 where the fourth coordinate is non-zero. We can extrude

Fig. 3. Extrusion/tetrahedralization with a simple starting mesh. First create a
directed acyclic graph (DAG) using vertex orders, then assign corresponding
tetrahedralizations to each triangular prism. The same process generates
pentachoralized models from tetrahedral meshes.

V along ve to obtain Ve ⊂ R4, which forms a set of 4D tetrahedral
prisms that must then be decomposed into pentachorons.
Analogous to the 3D case, where each rectangular face must

be divided in a way that guarantees that the resulting tetrahedra
are compatible, each tetrahedral prism must now be divided in a
way to ensure compatible pentachora. Fortunately, the strategy of
forming a DAG and using the edge directions to prescribe boundary
decompositions continues to work in 4D.

By examining the edge directions of a tetrahedral prism, we can
assign it one of 24 possible pentachoral decompositions. The DAG
on the initial tetrahedral mesh will then guarantee cross-prism com-
patibility. In the supplemental materials, we have included scripts
that exhaustively ensure that every possible set of boundary cuts as-
signed to a tetrahedron in this manner gives rise to a valid pentachor-
alization. We also include programs for performing extrusion/filling
in 3D and 4D.

Others have speculated that finding a valid pentachoralization of
a 3D mesh extruded into a 4D prism is equivalent to solving the NP-
complete monochromatic triangle problem on a graph [CodeParade
2023]. We have found that it instead reduces to the much simpler
problem of constructing a DAG.

Finally, even if the initial tetrahedral mesh was well-conditioned
[Shewchuk 2002], there is no guarantee that the resulting penta-
choral mesh will be as well. To the contrary, if ∥v𝑒 ∥ is very large, it
will inevitably generate “skinny” pentachorons that are degenerate
along one direction, and lead to catastrophically ill-conditioned ma-
trix inverses during deformation gradient computation. [Kim et al.
2019]
To ensure that the pentachorons were well-conditioned, if ∥v𝑒 ∥

was large, we subdivided the vector and performed the extrusion
in several smaller steps rather than one large displacement. An
analogous 3D surface operation would be be subdivide a cylinder
along its height in order to prevent long, skinny triangles from
stretching from one end cap to another. Generalized subdivision is
also available for refinement purposes [Petrov and Todorov 2018].

4 DEFORMATION SIMULATION
To simulate deformations in 4D, we can use any standard method,
e.g. the implicit solver from Baraff and Witkin [1998]:(

M − ℎ
𝜕f
𝜕v

− ℎ2 𝜕f
𝜕x

)
Δx = ℎ2f + ℎ

(
M − ℎ

𝜕f
𝜕v

)
v𝑛 (3)

3

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Shi, Wu, and Kim

Above,M is the mass matrix, f is the internal material force, ℎ is the
timestep, and x and v are the position and velocity. The overall form
of the equation is agnostic to the spatial dimension, and remains
the same between 2D and 3D. Thus, it can also be applied in 4D, but
requires a 4D method for computing f and its derivatives.
For concreteness, we will examine a 4D version of f using the

Stable Neo-Hookean (SNH) [Smith et al. 2018] elastic energy

𝜓SNH =
1
2
𝜇 (𝐼2 − 4) + 1

2
𝜆(𝐼3 − 𝛼)2 (4)

where 𝜇 is the shear modulus, or Lame’s second parameter, 𝜆 is
Lame’s first parameter, and 𝛼 = 1 + 𝜇

𝜆
. The terms

𝐼2 = tr(F⊤F) 𝐼3 = det(F) (5)

are deformation invariants [Bonet et al. 2021], which are also agnos-
tic to the spatial dimension. The F denotes the deformation gradient.

Sections 4.1 through 4.5 contain our detailed analyses of higher-
dimensional invariants and their derivatives in 4D, allowing for
energy Hessian eigenclamping. For readers interested in collision
detection, we refer them to section 5.

4.1 Deformation Gradient
The size of the deformation gradient matrix corresponds to the
spatial dimension. In 2D, F ∈ R2×2. In 3D, F ∈ R3×3. It follows that
in 4D, F ∈ R4×4. Computing F also follows analogously from the
2D and 3D cases. Given a pentachoron composed of the rest points
{p0, ..., p4} and deformed points {p0, ..., p4}, we can construct:

D𝑚 =

 p̄1 − p̄0 p̄2 − p̄0 p̄3 − p̄0 p̄4 − p̄0

 (6)

D𝑠 =

 p1 − p0 p2 − p0 p3 − p0 p4 − p0

 (7)

The expression for F and its labeled columns is then:

F = D𝑠D−1
𝑚 =

 f0 f1 f2 f3

 (8)

With F established, we can now analyze the deformation invariants.

4.2 𝐼2 Eigenanalysis
For the 𝐼2 = tr(F⊤F) invariant, the general form of the gradient is
the same as in 2D and 3D, albeit in R16:

𝜕𝐼2
𝜕F

= 2F g2 = vec
(
𝜕𝐼2
𝜕F

)
(9)

and the vectorized R16×16 force gradient is

vec
(
𝜕2𝐼2
𝜕F2

)
=

𝜕g2
𝜕F

= H2 = 2I (10)

Similar to the 2D and 3D cases, the eigenvalues are all 2, and the
multiplicity means that the eigenvectors span an arbitrary rank-16
vector space. The form of H2 will stay consistent regardless of the
dimension, so the 𝑛-D eigensystem is always 𝑛2 eigenvalues equal
to 2, and an arbitrary rank-𝑛2 vector space.

4.3 𝐼3 Eigenanalysis
4.3.1 4D Cross Product. The 3D cross product of two vectors gen-
erates a third orthogonal vector that completes the basis span. An
analogous 4D operation should take three vectors and produce a
fourth orthogonal vector. We can generalize the determinant-like
formulation of the 3D cross product as

×(x, y, z) = det


𝑥0 𝑦0 𝑧0 ê0
𝑥1 𝑦1 𝑧1 ê1
𝑥2 𝑦2 𝑧2 ê2
𝑥3 𝑦3 𝑧3 ê3

 (11)

where e𝑖 are the principle directors of R4. Carrying through expan-
sion by minors and using scalar-vector multiplication yields the
following vector in R4:

×(x, y, z) = −ê0 det

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3

 + ê1 det

𝑥0 𝑦0 𝑧0
𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3


−ê2 det


𝑥0 𝑦0 𝑧0
𝑥1 𝑦1 𝑧1
𝑥3 𝑦3 𝑧3

 + ê3 det

𝑥0 𝑦0 𝑧0
𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2


For any linearly independent triplet {x, y, z}, ×(x, y, z) generates a
fourth orthogonal vector. We additionally define the linear operator
[u, v]× ∈ R4×4 such that [u, v]× · x = ×(u, v, x):

[u, v]× =


0 𝑢3𝑣2 − 𝑢2𝑣3 𝑢1𝑣3 − 𝑢3𝑣1 𝑢2𝑣1 − 𝑢1𝑣2

𝑢2𝑣3 − 𝑢3𝑣2 0 𝑢3𝑣0 − 𝑢0𝑣3 𝑢0𝑣2 − 𝑢2𝑣0
𝑢3𝑣1 − 𝑢1𝑣3 𝑢0𝑣3 − 𝑢3𝑣0 0 𝑢1𝑣0 − 𝑢0𝑣1
𝑢1𝑣2 − 𝑢2𝑣1 𝑢2𝑣0 − 𝑢0𝑣2 𝑢0𝑣1 − 𝑢1𝑣0 0


4.3.2 𝐼3 Derivatives. Using these operators, the gradient becomes

𝜕𝐼3
𝜕F

=

 − × (f1, f2, f3) ×(f0, f2, f3) − × (f0, f1, f3) ×(f0, f1, f2)


Using the vectorization g3 = vec
(
𝜕𝐼3
𝜕F

)
, the Hessian becomes

𝜕g3
𝜕F

= H3 =


0 [f3, f2]× [f1, f3]× [f2, f1]×
. . . 0 [f3, f0]× [f0, f2]×
. . .

. . . 0 [f1, f0]×
sym. 0


We can now analyze the invariant’s eigensystem.

4.3.3 Eigensystem. The 16 eigenpairs of H3 are 4D generalizations
of the 3D eigenpairs for 𝐼3 from Smith et al. [2018]. Given the singular
value decomposition F = U𝚺V⊤, the first six eigenvalues correspond
to generalized twist modes. For brevity, we list the first two here,
with the complete listing in §1 of the supplemental materials:

𝜆
𝐼3
0 = 𝜎0𝜎1 𝜆

𝐼3
1 = 𝜎0𝜎2 (12)

The 𝜎𝑖 are singular values from 𝚺. The eigenmatrices Q𝑖 vectorize
into the eigenvectors q𝑖 = vec (Q𝑖), and have the general form

4

Hyper-Dimensional Deformation Simulation SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

Q𝑖 = 1/√2UΘ𝑖V⊤. The first two Θ𝑖 are

Θ0 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 Θ1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 (13)

and the complete set is in the supplemental materials. The next
six are generalized flip modes, where 𝜆

𝐼3
𝑖+6 = −𝜆𝐼3

𝑖
. The first two

eigenmatrices are

Θ6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 Θ7 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 (14)

The final four eigenmodes are linear combinations of the stretch
modes, the first two of which are:

Q′
0 = U


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 V
⊤ Q′

1 = U


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 V
⊤ (15)

Since they are orthogonal to the other twelve eigenmodes, we can
deflate H3 using q′

𝑖
= vec

(
Q′
𝑖

)
and D =

[
q′0 |q

′
1 |q

′
2 |q

′
3
]
to obtain

D⊤H3D =

©­­­«
0 𝜎2𝜎3 𝜎1𝜎3 𝜎1𝜎2

𝜎2𝜎3 0 𝜎0𝜎3 𝜎0𝜎2
𝜎1𝜎3 𝜎0𝜎3 0 𝜎0𝜎1
𝜎1𝜎2 𝜎0𝜎2 𝜎0𝜎1 0

ª®®®¬ (16)

Similar to Smith et al. [2018], the eigenpairs of this deflated matrix
can be used to obtain the final four modes of H3.

4.3.4 𝑛-D Generalization. The analytical derivatives of 𝐼3 can be
stated for 𝑛 ≥ 2 using Jacobi’s formula:

𝜕𝐼3
𝜕F

=
𝜕 det (F)

𝜕F
= (adj (F))⊤ (H3)𝑖 𝑗𝑝𝑞 = (−1)𝑠M𝑖𝑝,𝑗𝑞

where 0 ≤ 𝑖, 𝑗, 𝑝, 𝑞 ≤ 𝑛 − 1 and adj (F) is the adjugate matrix of F.
The matrixM𝑖𝑝,𝑗𝑞 is the second minor: the determinant of Fwith its
𝑖th and 𝑝th row, the 𝑗th and 𝑞th column removed, andM𝑖𝑝,𝑗𝑞 = 0
when 𝑖 = 𝑝 or 𝑗 = 𝑞. The constant 𝑠 is determined by:

𝑠 =

{
𝑖 + 𝑗 + 𝑝 + 𝑞 (𝑖 < 𝑝 and 𝑗 < 𝑞) or (𝑖 > 𝑝 and 𝑗 > 𝑞)
𝑖 + 𝑗 + 𝑝 + 𝑞 + 1 otherwise

For the eigensystems, following the patterns spanning 2D to 4D, we
hypothesize that any𝑛-D version of 𝐼3 will yield𝑛 linearly combined
stretch modes. The remaining 𝑛2 −𝑛 modes will be half twist modes
and half flip modes. Since 𝐼3 = Π𝑛−1

𝑖=0 𝜎𝑖 , the corresponding flip
eigenvalues will be −𝐼3/𝜎𝑖𝜎 𝑗 , where 𝑖 ≠ 𝑗 and 1s appear at (𝑖, 𝑗) and
(𝑗, 𝑖) in the center matrix. In the twist eigenpairs, a 1 gets negated.
For the stretch modes, we observe that the 2D and 3D cases show

a pattern of deflations under D⊤H3D:(
0 1
1 0

)
(in 2D) ⇒ ©­«

0 𝜎2 𝜎1
𝜎2 0 𝜎0
𝜎1 𝜎0 0

ª®¬ (in 3D) (17)

Combined with Eqn. 16, we hypothesize that for arbitrary 𝑛-D
stretchmodes, the generalized deflated scalingmatrix is 𝜕2𝐼3/𝜕 (vec(Σ))2,
which can be expressed as:

(
D⊤H3D

)
𝑖 𝑗 =

{
𝐼3/𝜎𝑖𝜎 𝑗 𝑖 ≠ 𝑗

0 𝑖 = 𝑗
(18)

The scaling modes can then be isolated via eigendecomposition. We
have numerically verified that our hypothesis holds for up to 100
spatial dimensions. Code is provided in our supplemental materials.

4.4 𝐼1 Eigenanalysis
The 𝐼1 invariant does not appear in the SNH energy, but we present
its 𝑛-D eigenanalysis here so that any 3D isotropic energy, e.g. the
ARAP energy [Sorkine and Alexa 2007], can be rewritten in 𝑛-D.

If F = RS is the polar decomposition, then we can denote 𝐼1 =

tr(S). The gradient of 𝐼1 generalizes from 3D to higher dimensions
using tr(S) = tr(F⊤R), which yields 𝜕𝐼1/𝜕F = R. The Hessian is then
the 𝑛-D rotation gradient, H1 = 𝜕R/𝜕F. Similar to previous works
[Smith et al. 2019], we assemble it from its eigenpairs.
The 𝑛-D form of H1 has (𝑛2−𝑛)/2 non-zero eigenpairs. For any

𝑖, 𝑗 ∈ {0, 1, · · · , 𝑛 − 1} and 𝑖 < 𝑗 , there exists an eigenpair:

𝜆𝑖 𝑗 =
2

𝜎𝑖 + 𝜎 𝑗
Q𝑖 𝑗 =

1
√

2
UΘV⊤ (19)

where Θ ∈ R𝑛×𝑛 , with entries Θ(𝑖, 𝑗) = 1, Θ(𝑗, 𝑖) = −1 and all other
entries are zero. The generalized rotation gradient is then:

H1 =

𝑛−2∑︁
𝑖=0

𝑛−1∑︁
𝑗=𝑖+1

𝜆𝑖 𝑗vec
(
Q𝑖 𝑗

) (
vec

(
Q𝑖 𝑗

))⊤ (20)

We have numerically verified that this expression holds for up to
100 spatial dimensions, and code is provided in the supplement.

4.5 4D Stable Neo-Hookean
With the invariant analysis complete, we can now compute the
eigensystem of the SNH energy. The Hessian matches the general
form from 2D and 3D:

𝜕2𝜓SNH
𝜕F2 = 𝜇I + 𝜆

(
(𝐼3 − 𝛼) 𝜕

2𝐼3
𝜕F2 + g3g⊤3

)
(21)

The first dozen eigenvectors are exactly the twist and flip modes,
and the eigenvalues are

𝜆SNH𝑖 = 𝜆(𝐼3 − 𝛼)𝜆𝐼3
𝑖
+ 𝜇 (22)

which matches the general 3D form from Kim and Eberle [2022],
but with the extra dimension adding a new 𝜎∗ to each 𝜆

𝐼3
𝑖
. For the

final four eigenmodes, we build the remaining subspace spanned by
the scaling modes by treating it as a rank-one update to the reduced
matrix in Eqn. 16. We compute the four modes with a numerical
solver.

Equipped with eigensystems for the invariants 𝐼1, 𝐼2, and 𝐼3 in any
dimension, general hyper-dimensional deformation energy eigen-
analysis follows. For more details, see §2 in the supplement.

5

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Shi, Wu, and Kim

5 COLLISION PROCESSING
As dimensionality increases, so does the the number of collision
primitive pairs. 2D has point-edge collisions, while 3D has point-
face and edge-edge collisions. For a dimension 𝑛, the number of
primitive pairs corresponds to the number of ways that 𝑛 + 1 points
can be split into two simplices: ⌈𝑛/2⌉. Thus, in 4D we again have
two cases to consider: point-tetrahedron and edge-triangle pairs.

5.1 Point-Tetrahedron Collisions
For point-tetrahedron pairs x𝑐 , {t0, t1, t2, t3}, we first find the tetra-
hedral barycentric coordinates {𝛼0, 𝛼1, 𝛼2, 𝛼3} of the closest interior
point to the colliding vertex:

argmin
𝛼0...3

0≤𝛼0...3≤1

x𝑐 − 3∑︁
𝑖=0

𝛼𝑖 t𝑖

 (23)

Solving for the 𝛼𝑖s, we then denote unsigned distance between a col-
lision point x𝑐 and the closest point on the tetrahedron

∑3
𝑖=0 𝛼𝑖 t𝑖 as 𝑙 .

Afterwards, we insert a spring force whenever a distance threshold
𝜖 is crossed, giving rise to a penalty energy

𝜓pt (𝑙) =
{
𝑘𝑐 (𝑠𝑙 − 𝜖)2 𝑙 < 𝜖

0 𝑙 ≥ 𝜖
(24)

where 𝑘𝑐 is a spring constant and 𝑠 ∈ {−1, 1} is set based on whether
x𝑐 is outside or inside the surface tetrahedron’s pentachoron.

5.2 Edge-Triangle Collisions
For edge-triangle pairs {e0, e1}, {t0, t1, t2}, we derive collisionweights
from a modified distance-finding minimization:

argmin
𝛽𝑖 ,𝛼𝑛

0≤𝛽𝑖 ,𝛼𝑛≤1

 1∑︁
𝑖=0

𝛽𝑖e𝑖 −
2∑︁

𝑛=0
𝛼𝑛t𝑛

 (25)

Taking the minimized value as the edge-triangle length 𝑙 and using
another spring force, we obtain the energy

𝜓et (𝑙) =
{
𝑘𝑐 (𝑙 − 𝜖)2 𝑙 < 𝜖

0 𝑙 ≥ 𝜖
(26)

where 𝑘𝑐 and 𝜖 are the same as in Eqn. 24.

5.3 Generalized 𝑛-D Collision Analysis
In line with previous analyses [Huang et al. 2024; Shi and Kim 2023],
we can derive a general eigensystem for 𝑛-D length-based penalties.
We will begin with the simple case of a single vertex against a set
of vertices, then expand to any two vertex sets.

5.3.1 Point-simplex length analysis. Consider a point x𝑐 ∈ R𝑛 and
a collection of 𝑘 points in R𝑛 denoted as {p0, ..., p𝑘−1} with convex
hull F . Let x𝑝 =

∑𝑘−1
𝑖=0 𝛼𝑖p𝑖 . For collisions, 𝛼𝑖 are the barycentric

coefficients that represent the point on F that is closest to x𝑐 , though
no assumptions on 𝛼𝑖 are needed in the following analysis.

We begin by taking derivatives of the general unsigned length
𝑙𝑢 =

x𝑐 − x𝑝

 by first defining intermediates:

v =


x𝑐
p0
.
.
.

p𝑘−1


w =


1

−𝛼0
.
.
.

−𝛼𝑘−1


P = I −

(x𝑐 − x𝑝) (x𝑐 − x𝑝)⊤

x𝑐 − x𝑝

2 (27)

The derivatives are then
𝜕𝑙𝑢

𝜕v
= g𝑙 =

1
𝑙𝑢
w ⊗ (x𝑐 − x𝑝) (28)

𝜕2𝑙𝑢
𝜕v2 = H𝑙 =

1
𝑙𝑢
ww⊤ ⊗ P (29)

where ⊗ is the Kronecker product. The Kronecker product implies
that the eigensystem of H𝑙 reduces to the eigensystems ofww⊤ and
P. Since P is a projection matrix into the subspace orthogonal to
x𝑐 − x𝑝 (denoted as (x𝑐 − x𝑝)⊥), its eigensystem is:

𝜆P𝑗 = 1 qP𝑗 ∈ (x𝑐 − x𝑝)⊥ (30)

Sinceww⊤ is an outer product, it has a single nontrivial eigenvector:

𝜆
(ww⊤)
0 = 1 +

𝑘−1∑︁
𝑛=0

𝛼2
𝑛 q(ww⊤)

0 = w (31)

The eigenpairs of H𝑙 are then constructed by selecting any two
eigenpairs from ww⊤ and P, multiplying their eigenvalues, and
taking the Kronecker product of their eigenvectors. The pairs with
non-zero eigenvalue then take the form

𝜆H𝑙 =
1
𝑙𝑢

(
1 +

𝑘−1∑︁
𝑛=0

𝛼2
𝑛

)
qH𝑙 ∈ w ⊗ (x𝑐 − x𝑝)⊥ (32)

5.3.2 Simplex-simplex length analysis. With the point-simplex case
in hand, the simplex-simplex eigenanalysis follows. First, set x𝑐 ∈
R𝑛 to a weighted combination of 𝑠 points {r0, ..., r𝑠−1} to obtain
x𝑐 =

∑𝑠−1
𝑖=0 𝛽𝑖r𝑖 . Next, modify v and w from Eqn. 27:

v =
[
r0 . . . r𝑠−1 p0 . . . p𝑘−1

]⊤ (33)

w =
[
𝛽0 . . . 𝛽𝑠−1 −𝛼0 . . . −𝛼𝑘−1

]⊤ (34)

With 𝑙𝑢 =

x𝑐 − x𝑝

, the analysis in §5.3.1 holds with these variables
changed, and retrieves the point-simplex case when 𝛽0 = 𝑠 = 1.

5.3.3 Collision Energy Eigensystems. Collision energies are primar-
ily functions of unsigned length𝜓 (𝑙𝑢). By applying the chain rule,
the penalty derivatives take the form

𝜕𝜓

𝜕v
=

𝜕2𝜓

𝜕𝑙2𝑢
g𝑙

𝜕2𝜓

𝜕v2 =
𝜕2𝜓

𝜕𝑙2𝑢
g𝑙g

⊤
𝑙
+ 𝜕𝜓

𝜕𝑙𝑢
H𝑙 (35)

Since g𝑙 is within the null space of H𝑙 and is orthogonal to its non-
zero eigenpairs, the eigensystem for 𝜕2𝜓

𝜕v2 becomes:

𝜆
𝜓

0 =
𝜕2𝜓

𝜕𝑙2𝑢

(
1 +

𝑛−1∑︁
𝑘=0

𝛼2
𝑘

)
q𝜓0 = g𝑙 (36)

𝜆
𝜓

𝑖
=

𝜕𝜓

𝜕𝑙𝑢

1
𝑙𝑢

(
1 +

𝑛−1∑︁
𝑘=0

𝛼2
𝑘

)
q𝜓
𝑖
∈ w ⊗ (x𝑐 − x𝑝)⊥ (37)

6

Hyper-Dimensional Deformation Simulation SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

The first eigenpair is a compression mode parallel to the penalty
direction, and the other modes represent orthogonal buckling. To
filter the Hessian, we check the signs of 𝜕𝜓/𝜕𝑙𝑢 and 𝜕2𝜓/𝜕𝑙2

𝑢 and take
absolute values as needed [Chen et al. 2024], avoiding any numerical
eigensolving.

6 PERFORMANCE AND RESULTS
To visualize 4D meshes, we used the method of Chu et al. [2009] to
maintain consistent surface normals and vertex/face ordering; their
slicing method for composing surface tetrahedra is also the primary
mode of visualization, and generates triangular meshes from surface
tetrahedra. We used Tetgen [Si 2015] to generate tetrahedral meshes
and used extrusion/filling from section 3.2 to create simulation-ready
pentachoral meshes. For videos, see the supplementary materials.

6.1 Results
6.1.1 Rotating Bunny. Rotations in 3D are about an axis, but general
rotations in 𝑛-D are better characterized by the two-dimensional
plane they act on. In 4D, a body can deform under two completely
independent rotations. We demonstrate this on a deformable bunny
prism by kinematically rotating its hyper-spherical core, first with
a 𝑥𝑧 rotation, then with a double rotation in 𝑦𝑧 and𝑤𝑥 (Fig. 4).

6.1.2 Armadillo Hugs. To demonstrate the expanded range of mo-
tion in 4D, we collide two armadillo prisms. Both move along the
𝑦 axis, while one rotates about the 𝑤𝑧 plane. Their contacts pro-
duce a variety of deformations that phase in and out of the 3D slice
we visualize. Rotating the scene is another way to understand the
interaction. A 90-degree rotation in the𝑤𝑥 plane makes the prism-
like geometry more apparent and the constant rotation in the gold
armadillo more visible (Fig. 1).

6.1.3 Hyper-Dimensional Twisting. To further visualize 4D deforma-
tion, we twist several hyper-dimensional octopus prisms. Twisting
two opposite ends of a prism along non-visible values of 𝑤 , the
4D component only becomes visible as warping artifacts along the
extremities of motion. Otherwise, objects appear to deform under
an unseen influence (Fig. 5). Twisting so that vertices within the
slice are forced to leave yields more effects as connected elements
deform to follow along (Fig. 6).

6.1.4 4D Noodles. 3D intuitions on space and proportionality can
misguide expectations when viewing 3D slices in 4D space. We drop
several deforming cylinders into a four-dimensional half sphere,
and observe that their deflection into the fourth dimension allows
for much less space to be filled than expected (Fig. 8). Indeed, five
noodles of length 20 and radius 1 only fill around 13% of the hy-
perbowl of radius 6, whereas in three dimensions they would fill
around 69% of a 3D bowl’s total volume.

6.1.5 Cantilevers. Keeping one end of a 4D cantilever constrained,
the beam becomes stiffer under gravity as we increase its Young’s
modulus. Capturing a 3D slice in the middle of the 4D prism yields
no noticeable effects. However, when choosing a slice near the prism
edge, we can see sections of the beam phase in and out (Fig. 7).

6.2 Performance
Collision processing dominated the runtime for the majority of
the scenarios, even after implementing AABB trees and basic mul-
tithreading. Force and Hessian assembly times similarly increase
with the number of contacts. Collision processing should dominate
more as the dimension increases. The ⌈𝑛/2⌉ collision cases means
that, e.g. in 5D, point-pentachoron, edge-tetrahedron, and triangle-
triangle pairs need to be queried. Detailed timings for each scene
are available in table 1 of the supplement.

7 CONCLUSIONS AND FUTURE WORK

7.1 Limitations
Our extrude and fill approach to meshes generates viable 4D meshes,
but also a specific look. Alternate approaches like higher-order
Delaunay [Aganj et al. 2007] could yield richer shapes. The “curse
of dimensionality” appears for pentachoral meshes, where a large
number of points are needed to obtain a high-resolution mesh, but
most of the points do not appear in the final visualization. One
solution might be to develop a surface-only 4D boundary-element
approach [Sugimoto et al. 2022] for deformation.
We also did not investigate specially tailored strategies for col-

lision detection or system solves that leverage the 4D structure of
the simulations, so additional efficiencies are possible there.

7.2 Future Work
The deformation invariants arise as coefficients of the characteristic
polynomial of F, so higher order invariants will appear at higher
dimensions. We found the existing invariants sufficed for SNH in
4D, but leave the characterization of new invariants to future work.

Finally, in the same way that the deformation equations are
dimension-agnostic, the Navier-Stokes equations could also be ex-
tended to 4D. Creating a 4D fluid simulation and coupling it to our
simulation is another avenue for creating previously unseen visuals.

ACKNOWLEDGMENTS
This work was supported by The Teng and Han Family Fund and
NSF IIS-2132280. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES
Ehsan Aganj, Jean-Philippe Pons, Florent Ségonne, and Renaud Keriven. 2007. Spatio-

temporal shape from silhouette using four-dimensional delaunay meshing. In 2007
IEEE 11th International Conference on Computer Vision. IEEE, 1–8.

Marc Alexa, Daniel Cohen-Or, and David Levin. 2000. As-rigid-as-possible shape
interpolation. In Proceedings of SIGGRAPH (SIGGRAPH ’00). ACM Press/Addison-
Wesley Publishing Co., USA, 157–164.

Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. 2005. Varia-
tional Tetrahedral Meshing. ACM Transactions on Graphics (2005).

Sheldon Andrews, Kenny Erleben, and Zachary Ferguson. 2022. Contact and friction
simulation for computer graphics. In ACM SIGGRAPH Courses. 1–172.

David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings
of SIGGRAPH. 43–54. https://doi.org/10.1145/280814.280821

Javier Bonet, Antonio J Gil, and Richard D Wood. 2021. Nonlinear solid mechanics for
finite element analysis: dynamics. Cambridge University Press.

Paul Borrel and Dominique Bechmann. 1991. Deformation of n-dimensional objects. In
Proceedings of the first ACM symposium on Solid modeling foundations and CAD/CAM
applications (SMA ’91). Association for Computing Machinery, New York, NY, USA,
351–369. https://doi.org/10.1145/112515.112564

7

https://doi.org/10.1145/280814.280821
https://doi.org/10.1145/112515.112564

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Shi, Wu, and Kim

Table 1. Performance of 4D simulations. Symbols 𝜖 and 𝑘𝑐 are distance and spring constants for point-tetrahedron and edge-trangle penalty energies. Timings
are per frame in minutes:seconds, unless otherwise indicated. All simulations ran on 2.9GHz Intel Xeons.

Fig. Vertices Pentachorons Surface Tets/Tris/Edges Δ𝑡 (s) 𝜖 𝑘𝑐 Cores Timing
4 - Rotating Bunny 7,235 76,176 39,618/79,236/46,280 1/30 2e-2 1000 16 6.27s
1 - Armadillo Hugs 18,819 205,920 103,908/207,816/121,388 1/200 8e-2 3000 12 24.5s
5a - Alien Twisting 23,551 245,040 132,252/264,504/154,552 1/150 5e-2 3000 12 45.1s
5b - Octopus Twisting 24,957 245,184 141,276/282,552/165,204 1/100 4e-2 3000 12 01:25
6 - Thin Wringing 26,100 218,488 147,442/294,884/172,579 1/150 3e-2 3000 12 46.9s
6 - Thick Wringing 28,212 280,260 157,146/314,292/183,774 1/150 4e-2 3000 12 53.8s
7 - Cantilevers 17,589 262,144 66,560/113,120/77,800 1/30 2e-2 3000 12 14-15s
8 - 4D Noodles 33,415 256,000 195,200/390,400/228,420 1/150 8e-2 3000 12 49.1s

Fig. 4. Rotating Bunny. Kinematically constraining a hyperspherical core of an extruded Stanford bunny, we rotate it once in the 𝑥𝑧 plane (first two stills) and
do a double rotation in the 𝑦𝑧 and 𝑤𝑥 planes (remaining stills).

Jan Brandts, Sergey Korotov, and Michal Křížek. 2007. Simplicial finite elements in
higher dimensions. Applications of Mathematics 52, 3 (2007), 251–265.

Philip Claude Caplan, Robert Haimes, David L Darmofal, and Marshall C Galbraith.
2020. Four-dimensional anisotropic mesh adaptation. Computer-Aided Design 129
(2020), 102915.

Marco Cavallo. 2021. Higher dimensional graphics: Conceiving worlds in four spatial
dimensions and beyond. In Computer Graphics Forum, Vol. 40. Wiley Online Library,
51–63.

Honglin Chen, Hsueh-Ti Derek Liu, David I.W. Levin, Changxi Zheng, andAlec Jacobson.
2024. Stabler Neo-Hookean Simulation: Absolute Eigenvalue Filtering for Projected
Newton. In ACM SIGGRAPH Conference Papers. New York, NY, USA, 1–10.

Alan Chu, Chi-Wing Fu, Andrew Hanson, and Pheng-Ann Heng. 2009. GL4D: A
GPU-based Architecture for Interactive 4D Visualization. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (Nov. 2009).

CodeParade. 2023. Making Models in 4 Dimensions - 4D Golf Devlog #6. https:
//www.youtube.com/watch?v=Ir8oft_qAMQ

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H Barr. 2001. Dynamic
real-time deformations using space & time adaptive sampling. In Proceedings of
SIGGRAPH. 31–36.

Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. 1996. OBBTree: A hierarchical
structure for rapid interference detection. In Proceedings of SIGGRAPH. 171–180.

Andrew J Hanson. 2005. Visualizing quaternions. In ACM SIGGRAPH Courses. 1–es.
Andrew J Hanson and Robert A Cross. 1993. Interactive visualization methods for four

dimensions. In Proceedings Visualization’93. IEEE, 196–203.
John C Hart, Daniel J Sandin, and Louis H Kauffman. 1989. Ray tracing deterministic

3-D fractals. In Proceedings of SIGGRAPH. 289–296.
Linda Dalrymple Henderson. 2018. The fourth dimension and non-Euclidean geometry

in modern art. MIT Press.
William L Hibbard, John Anderson, Ian Foster, Brian E Paul, Robert Jacob, Chad Schafer,

and Mary K Tyree. 1996. Exploring coupled atmosphere-ocean models using Vis5D.
The International Journal of Supercomputer Applications and High Performance Com-
puting 10, 2-3 (1996), 211–222.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 60.

Kemeng Huang, Floyd M Chitalu, Huancheng Lin, and Taku Komura. 2024. GIPC: Fast
and stable Gauss-Newton optimization of IPC barrier energy. ACM Transactions on
Graphics 43, 2 (2024), 1–18.

Dariusz Jamroz. 2009. Multidimensional labyrinth–multidimensional virtual reality. In
man-machine interactions. Springer, 445–450.

Seung-Wook Kim, Jaehyung Doh, and Junghyun Han. 2022. Modeling and rendering
non-euclidean spaces approximated with concatenated polytopes. ACM Transactions
on Graphics (TOG) 41, 4 (2022), 1–13.

Theodore Kim, Fernando De Goes, and Hayley Iben. 2019. Anisotropic elasticity for
inversion-safety and element rehabilitation. ACM Transactions on Graphics (TOG)
38, 4 (2019), 1–15.

Theodore Kim and David Eberle. 2022. Dynamic deformables: implementation and
production practicalities (now with code!). In ACM SIGGRAPH Courses. 1–259.

Huancheng Lin, Floyd M Chitalu, and Taku Komura. 2024. Analytic rotation-invariant
modelling of anisotropic finite elements. ACM Transactions on Graphics 43, 5 (2024),
1–20.

Bruno Lévy and Nicolas Bonneel. 2013. Variational Anisotropic Surface Meshing
with Voronoi Parallel Linear Enumeration. In Proceedings of the 21st International
Meshing Roundtable, Xiangmin Jiao and Jean-Christophe Weill (Eds.). Springer,
Berlin, Heidelberg, 349–366. https://doi.org/10.1007/978-3-642-33573-0_21

Takanobu Miwa, Yukihito Sakai, and Shuji Hashimoto. 2015. 4-D spatial perception
established through hypercube recognition tasks using interactive visualization
system with 3-D screen. In Proceedings of the ACM SIGGRAPH Symposium on Applied
Perception. 75–82.

MatthewMoore and JaneWilhelms. 1988. Collision detection and response for computer
animation. In Proceedings of SIGGRAPH. 289–298.

Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara
Cutler. 2002. Stable real-time deformations. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 49–54.

Seoyong Nam, Minho Chung, Haerim Kim, Eunchae Kim, Taehyeon Kim, and Yongjae
Yoo. 2024. Automatic Generation of Multimodal 4D Effects for Immersive Video
Watching Experiences. In SIGGRAPH Asia Technical Communications. 1–4.

Alan Norton. 1982. Generation and display of geometric fractals in 3-D. Proceedings of
SIGGRAPH 16, 3 (1982), 61–67.

Miroslav S. Petrov and Todor D. Todorov. 2018. Stable subdivision of 4D polytopes.
Numerical Algorithms 79, 2 (Oct. 2018), 633–656. https://doi.org/10.1007/s11075-
017-0454-2

Miroslav S Petrov and Todor D Todorov. 2021. Properties of the multidimensional finite
elements. Appl. Math. Comput. 391 (2021), 125695.

Mike Seymour. 2014. Interstellar: inside the black art. FXGuide (2014).
Jonathan Shewchuk. 2002. What is a good linear finite element? interpolation, condi-

tioning, anisotropy, and quality measures. University of California at Berkeley 2002
(2002).

8

https://www.youtube.com/watch?v=Ir8oft_qAMQ
https://www.youtube.com/watch?v=Ir8oft_qAMQ
https://doi.org/10.1007/978-3-642-33573-0_21
https://doi.org/10.1007/s11075-017-0454-2
https://doi.org/10.1007/s11075-017-0454-2

Hyper-Dimensional Deformation Simulation SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

(a) Alien

(b) Octopus

Fig. 5. Alien/Octopus Twisting. By twisting the ends of an extruded prism,
the middle slice appears to crush inwards on itself (top rows). Rotating the
camera 90 degrees in the 𝑤𝑥 plane reveals the underlying twisting (bottom
rows).

Jonathan Richard Shewchuk. 2008. General-Dimensional Constrained Delaunay and
Constrained Regular Triangulations, I: Combinatorial Properties. Discrete & Com-
putational Geometry 39, 1 (March 2008), 580–637. https://doi.org/10.1007/s00454-
008-9060-3

Alvin Shi and Theodore Kim. 2023. A Unified Analysis of Penalty-Based Collision
Energies. Proceedings of the ACM on Computer Graphics and Interactive Techniques
6, 3 (Aug. 2023), 41:1–41:19. https://doi.org/10.1145/3606934

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Software 41, 2 (Feb. 2015), 11:1–11:36. https://doi.org/10.1145/2629697

Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean
Flesh Simulation. ACM Transactions on Graphics 37, 2 (March 2018), 12:1–12:15.
https://doi.org/10.1145/3180491

Breannan Smith, Fernando De Goes, and Theodore Kim. 2019. Analytic eigensystems
for isotropic distortion energies. ACM Transactions on Graphics (TOG) 38, 1 (2019),
1–15.

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Proceed-
ings of the Symposium on Geometry processing, Vol. 4. 109–116.

Ryusuke Sugimoto, Christopher Batty, and Toshiya Hachisuka. 2022. Surface-Only
Dynamic Deformables using a Boundary Element Method. In Computer Graphics
Forum, Vol. 41. Wiley Online Library, 75–86.

Fig. 6. Wringing. Kinematically constraining the tentacle tips of an extruded
octopus, we first stretch it downwards (top left) and apply a 540 degree
rotation in the 𝑤𝑦 plane. Depending on the extrusion thickness, different
effects appear in the main slice.

Fig. 7. Cantilevers. From left to right, the cantilevers sag at stiffness coeffi-
cients 𝐸 = 275, 550, 1010, 2000, and 4000 GPa. The extra degree of freedom
in the fourth spatial dimension causes parts of the beam to phase out of
the slice as it settles.

Marc ten Bosch. 2020. N-dimensional rigid body dynamics. ACM Transactions on
Graphics 39, 4 (Aug. 2020), 55:55:1–55:55:6. https://doi.org/10.1145/3386569.3392483

Jarke J van Wijk and Robert van Liere. 1993. Hyperslice. In Proceedings Visualization.
IEEE, 119–125.

Max von Danwitz, Patrick Antony, Fabian Key, Norbert Hosters, and Marek Behr.
2021. Four-dimensional elastically deformed simplex space-time meshes for do-
mains with time-variant topology. International Journal for Numerical Meth-
ods in Fluids 93, 12 (2021), 3490–3506. https://doi.org/10.1002/fld.5042 _eprint:

9

https://doi.org/10.1007/s00454-008-9060-3
https://doi.org/10.1007/s00454-008-9060-3
https://doi.org/10.1145/3606934
https://doi.org/10.1145/2629697
https://doi.org/10.1145/3180491
https://doi.org/10.1145/3386569.3392483
https://doi.org/10.1002/fld.5042

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Shi, Wu, and Kim

Fig. 8. Hypernoodles. 4D noodles fall into a 4D bowl. The top row depicts the strands as they deform into the fourth dimension, while the bottom row sweeps
through several slices of the settled state.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.5042.
Mingchuan Wang, Benoît Panicaud, Emmanuelle Rouhaud, Richard Kerner, and Arjen

Roos. 2016. Incremental constitutive models for elastoplastic materials undergoing
finite deformations by using a four-dimensional formalism. International Journal
of Engineering Science 106 (Sept. 2016), 199–219. https://doi.org/10.1016/j.ijengsci.
2016.06.006

Gao-Feng Zhao. 2017. Developing a four-dimensional lattice spring model for mechan-
ical responses of solids. Computer Methods in Applied Mechanics and Engineering
315 (March 2017), 881–895. https://doi.org/10.1016/j.cma.2016.11.034

Zichun Zhong, Wenping Wang, Bruno Lévy, Jing Hua, and Xiaohu Guo. 2018. Comput-
ing a high-dimensional euclidean embedding from an arbitrary smooth riemannian
metric. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–16.

10

https://doi.org/10.1016/j.ijengsci.2016.06.006
https://doi.org/10.1016/j.ijengsci.2016.06.006
https://doi.org/10.1016/j.cma.2016.11.034

	Abstract
	1 Introduction
	2 Related Work
	3 Mesh Generation
	3.1 3D Extrude and Fill
	3.2 4D Extrude and Fill

	4 Deformation Simulation
	4.1 Deformation Gradient
	4.2 I2 Eigenanalysis
	4.3 I3 Eigenanalysis
	4.4 I1 Eigenanalysis
	4.5 4D Stable Neo-Hookean

	5 Collision Processing
	5.1 Point-Tetrahedron Collisions
	5.2 Edge-Triangle Collisions
	5.3 Generalized n-D Collision Analysis

	6 Performance and Results
	6.1 Results
	6.2 Performance

	7 Conclusions and Future Work
	7.1 Limitations
	7.2 Future Work

	Acknowledgments
	References

